R-Matrix Calculations of Electron Impact Electronic Excitation of BeH

Daniel Darby-Lewis1,*, Zdenek Mašín2, Kerry Lawson3 and Jonathan Tennyson1

1Department of Physics & Astronomy, University College London, Gower St., London, WC1E 6BT, UK.
2Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin, Germany
3CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

We present ab initio results of electron scattering calculations from beryllium mono-hydride (BeH) for the purpose of detecting and monitoring the transport of BeH in fusion devices such as JET and ITER [1]. Several target and scattering models have been considered, many of which failed to produce sufficiently accurate results with the UKRmol suite [2]. The final chosen model is a close coupling (CC) frozen core full configuration interaction (FC-FCI) calculation. The scattering calculation is carried out using the R-matrix method and a new version of the UK R-Matrix codes. The standard UKRmol suite uses Gaussian Type Orbitals (GTOs) for the continuum functions; we show this method has numerical problems for the present case. A new B-spline – GTO hybrid continuum function code, implemented in the UKRmol+ suite, gives good results. This new code allows the use of larger R-matrix spheres and avoids issues with linear dependence occasionally encountered with the GTOs continuum functions. The UKRmol+ code will be used to generate new results for BeH collisions including uncertainty quantification. The results from these calculations are to be used in modeling processes in JET [3].

We acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) and the Culham Centre for Fusion Energy (CCFE) for funding.


*daniel.darby.11@ucl.ac.uk