Computer Simulation of Ion-irradiation of Tungsten: Preliminary Results

Presented by Shishir Deshpande
Institute for Plasma Research
Gandhinagar-382428, INDIA

Coworkers:
P. N. Maya, Prithwish Nandi, P.V. Subhash, P. M. Raole (IPR, India)
Manoj Warrier (BARC, India)

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Objectives

• To simulate the ion-induced damage in tungsten
• To study the influence of micro-structure on damage and its impact. Focus on the issues which are inaccessible for experimental investigation
• Ultimately simulate trapping and retention of hydrogen isotopes within the polycrystalline-W
Plan

• PKA spectrum due to neutrons (ITER-like scenario)
• Dynamics of cascade evolution
• Frenkel Pairs
• Defect structures
• Diffusive movement of interstitial
• Deuterium interaction with W-surface
• Grain Boundary Studies

There will be a separate presentation on ion-irradiation experiments tomorrow
An ITER-like scenario

Power=500 MW
ATILA computations: Solving neutron transport equations using FEM methods
For 46 energy groups and 40017 mesh points for 500 MW H-mode D-T operations [*]

Lowest and highest neutron flux distribution

\[
\Phi = \phi_0 \times 1.77 \times 10^{20}
\]

[*] P.V. Subhash et al., ITER Nuclear Calculations with ATILIA Code ANST, 108 (2013)
Primary Knock-on Atom (PKA) Energy Calculation

PKA energy was calculated at 400 selected representative points (x) using SPECTER code [*]. Average is about 18 keV.

Neutron cross-sections are taken from FENDL library [**]

[*] L.R. Greenwood and R.K. Smither, ANL/FPP/TM-197
[**] https://www-nds.iaea.org/fendl30/

Elastic cross-section of neutrons with W184
PKA Energy Spectrum

PKA generated (right) within tungsten; 0.5 cm thickness, 1cm x 1cm area. One of the typical locations on outer vertical target region where n-flux is high.

Neutron flux at divertor surface on left. Fusion power 500 MW, Exposure time 400 sec.
DEMO/Next Step Tokamak: Some thoughts

- Higher flux (about 3-4 times that of ITER?)
- Higher pulse duration (about a day? ~200 times)
- Higher heat flux (3-4 times?)

- What does that translate into?
 - Damage characteristics and magnitude
 - Amount of fuel retained
 - Replacement period
Dynamics of PKA in tungsten - Ion-Irradiation Simulations

Two approaches
1. Binary Collision Monte Carlo (TRIM [*]/SRIM[#])
2. Molecular Dynamics Simulations (LAMMPS[**]/PARCAS[*#])

[* Eckstein, Computer Simulation of Ion Solid Interactions, Springer]
[# ZBL]
[** Plimpton]
[*# Nordlund]
Slowing Down of the Energetic Ions in Tungsten

Electronic loss has also been accounted for using Lindhard-Scharff Model [*].

\[S_e = \frac{8\pi e^2 a_\theta}{4\pi e_\theta} \frac{Z_1^{7/6} Z_2}{(Z_1^{2/3} + Z_2^{2/3})^{3/2}} \frac{v}{v_\theta} \]

The electronic stopping has been modelled as a continuous frictional loss to the electron system.

Electronic and nuclear stopping power as a function of W ion energy for neutron PKA range using ZBL formalism [**]

Both Binary Collision Monte Carlo & MD simulations and MD simulations can handle the frictional electronic losses.

[*] Lindhard-Scharff
[**] ZBL

2nd RCM of the CRP on Irradiated Tungsten, Seoul, Korea, 8-11 Sept. 2015
TRIM/SRIM can simulate collision cascades with higher incident ion energies with frictional electronic losses.

The initial ballistic phase and the PKA generation can be modelled.

The recombination in the thermal spike phase of the cascade is not implemented.

The structure of the defects created due to ion irradiation cannot be simulated.

MD simulations take care of lattice structure & thermal spike recombination.

Defect structure produced will depend on interatomic potential used for the simulations.

PKA spectrum generated by SRIM for 80 MeV and 7.5 MeV W ions in W lattice.

Low energy peak

- TRIM/SRIM can simulate collision cascades with higher incident ion energies with frictional electronic losses.
- The initial ballistic phase and the PKA generation can be modelled.

High energy tail

- The recombination in the thermal spike phase of the cascade is not implemented.
- The structure of the defects created due to ion irradiation cannot be simulated.

MD simulations take care of lattice structure & thermal spike recombination.

Defect structure produced will depend on interatomic potential used for the simulations.

2nd RCM of the CRP on Irradiated Tungsten, Seoul, Korea, 8-11 Sept. 2015
Molecular Dynamics Simulations – W-W & W-H Potentials

Interatomic Potential Models

EAM

FS

AT

+ ZBL

Juslin and Wirth

Zhou et al.

DNMD

+ ZBL

Fikar et al.

Bjorkas et al.

Bond Order Potential

Li et al.

Justin et al.

Finnis & Sinclair (FS)

Ackland & Thetford (AT)

Juslin & Wirth EAM (AT + ZBL)

Derlet-Nguyen-Manh-Dudarev (DNMD)

DNMD + ZBL (Bjorkas et al.)

NIM B, 267, (2009) 3204-3208

DNMD + ZBL (Fikar et al.)

ABOP potential by Li et al.

ABOP potential by Juslin et al.

Zhou et al (EAM)

2nd RCM of CRP on Irradiated Tungsten, Seoul, Korea, 8-11 Sept. 2015
Comparison of potentials – equilibrium properties

<table>
<thead>
<tr>
<th></th>
<th>E_{cohesive}</th>
<th>Lattice Constant</th>
<th>C_{11}</th>
<th>C_{12}</th>
<th>C_{44}</th>
<th>E_v</th>
<th>E_{100d}</th>
<th>E_{110d}</th>
<th>E_{111d}</th>
<th>E_{octa}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt.</td>
<td>-8.90 [*]</td>
<td>3.1652 [**]</td>
<td>522.4 [**]</td>
<td>204.4 [**]</td>
<td>160.6 [**]</td>
<td>3.7</td>
<td>11.513</td>
<td>9.84</td>
<td>9.55</td>
<td>11.7</td>
</tr>
<tr>
<td>DFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.652</td>
<td>Not stable</td>
<td>7.805</td>
<td>8.524</td>
</tr>
<tr>
<td>AT</td>
<td>-8.90</td>
<td>3.1652</td>
<td>522.43</td>
<td>204.41</td>
<td>160.61</td>
<td>3.554</td>
<td>10.277</td>
<td>10.157</td>
<td>9.50</td>
<td>10.393</td>
</tr>
<tr>
<td>Juslin (EAM)</td>
<td>-8.90</td>
<td>3.1652</td>
<td>522.47</td>
<td>204.45</td>
<td>160.64</td>
<td>11.334</td>
<td>9.768</td>
<td>9.472</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>DNMD+ZBL (Bjorkas)</td>
<td>-8.90</td>
<td>3.1652</td>
<td>523.10</td>
<td>204.67</td>
<td>160.81</td>
<td>3.557</td>
<td>11.333</td>
<td>9.768</td>
<td>9.472</td>
<td></td>
</tr>
<tr>
<td>DNMD+ZBL (Fikar)</td>
<td>-8.90</td>
<td>3.1652</td>
<td>523.10</td>
<td>204.67</td>
<td>160.81</td>
<td>3.557</td>
<td>11.333</td>
<td>9.768</td>
<td>9.472</td>
<td></td>
</tr>
<tr>
<td>Li-ABOP</td>
<td>-8.86</td>
<td>3.1652</td>
<td>515</td>
<td>203</td>
<td>162</td>
<td>3.52</td>
<td>12.01</td>
<td>9.53</td>
<td>9.33</td>
<td>12.05</td>
</tr>
<tr>
<td>Zhou et al</td>
<td>-8.757</td>
<td>3.165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displacement energy

<table>
<thead>
<tr>
<th>E_d (eV)</th>
<th>Expt. [**]</th>
<th>AT</th>
<th>AT+ZBL</th>
<th>DNMD</th>
<th>DNMD+Fikar</th>
<th>DNMD+Bjorkas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>~40-50</td>
<td>64</td>
<td>48</td>
<td>55±3</td>
<td>55</td>
<td>41±1</td>
</tr>
<tr>
<td>Avg.</td>
<td>~80</td>
<td>166</td>
<td>128</td>
<td>88.3±0.7</td>
<td>84.5±0.9</td>
<td></td>
</tr>
</tbody>
</table>

[*] Table 3, Kittel (1976)

2nd RCM of the CRP on Irradiated Tungsten, Seoul, Korea, 8-11 Sept. 2015
Single Crystal Studies – Cascade Simulations

Four different potentials are used for simulating cascade – DNMD, Zhu, Juslin and Li

Energy range simulated 0.5 KeV to 20 KeV

Sample temperature – 300 K

Simulation box – Cubical box with periodic boundary conditions in X, Y & Z directions

No. atoms – 54000 (500eV) 2.1x10^6 (for 20 KeV)

Codes used – PARCAS & LAMMPS

A minimum of 150 simulations were performed for each energy with different random directions
Evolution of a typical cascade at 5 keV (Li)

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Evolution of Thermal Spike During the Cascade (Juslin BOP)

Liquid/hot atoms are those atoms where the average kinetic energy of it and its nearest neighbours were more than the melting point of the material.

It shows the extent of cascade with distinct regimes for all the energies.

The temporal and spatial extent of thermal spike increases with the incident ion energy.

2nd RCM of the CRP on Irradiated Tungsten, Seoul, Korea, 8-11 Sept. 2015
Temporal evolution of cascade volume (Juslin BOP)

2nd RCM of the CRP on Irradiated Tungsten, Seoul, Korea, 8-11 Sept. 2015
Thermal Spike Zone Increases with Incident Ion Energy

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Frenkel pairs
More than 60 random directions have to be sampled for average displacement to level off.

\[n_{\text{avg}, N} = \frac{1}{N} \sum_{i=1}^{N} \frac{n_{d,i}}{N} \]

More than 100 random directions have to be sampled for standard deviation (\(\sigma \)) to level off.

\[\sigma_N = \left(\frac{1}{N} \sum_{i=1}^{N} \frac{(n_{d,i} - n_{\text{avg}, N})^2}{N} \right)^{1/2} \]
Most of the Frenkel Pairs (FP) are recombined during the thermal spike and there exists only a few surviving number of FP at the end of the cascade.

Detailed analysis is going on for different dynamic regimes in FP evolution
At higher PKA energies (above 100keV), the coupling between the electrons and lattice may become significant.

Simulations are ongoing for studying this using a two-temperature model for lattice and electronic system.
Comparison of number of FP produced using different potentials

All the studied potentials of different nature seem to show similar number of FP for the same energy in contrast to TRIM.SP data.
The Zhu potential data is plotted for corrected electronic loss.

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Defect clusters
Type of Defects Produced During the Cascade

In addition to isolated vacancies & interstitials clustering of defects were observed at higher energies.

Dumbbells and ring like interstitial vacancy clustering (Zhu potential)

Planar and loop-like vacancy interstitial clustering along with dumbbells (Juslin BOP)

Crowdions and loop-like clustering (DNMD potential)

Although the number of FP are similar in all potentials, the type of defect produced is different.
Defect Clustering – Statistics

In-cascade clustering of vacancies and interstitials are seen

Most of the defects are single up to 5 KeV in Zhu potential.
Double and triple vacancies are observed at 10 KeV & 20 KeV in Juslin potential

Detailed analysis of defect clustering at higher energies is ongoing

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Normalized Defect Distribution

Interstitial distribution

Vacancy distribution

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Diffusion of Self Interstitial Atom (SIA) in Single Crystal W – Interstitialcy diffusion

MD simulations with a single interstitial for 10 ns at 1100 K to 2900 K
Most of the jumps are taking place along the diagonals of the cubic unit cells in different planes.

Several jumps continue in the same direction – successive 1D jumps, else they Undergo a change in direction (rotational jumps)
Almost all jumps are 1NN (nearest neighbour)
Interstitialcy Diffusion coefficient and migration energy

\[D_0 = 2.22 \times 10^{-7} \text{ m}^2/\text{s} \]

\[E_m = 0.4 \text{ eV} \]

W Interstitialcy diffusion is Arrhenius like

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Deuterium Interaction with Tungsten

MD simulations of Deuterium sticking on single crystal tungsten (un-irradiated & irradiated W)

Two different potentials - Juslin BOP & Li BOP

Sample temperature – 300K

D energy – 0.003 eV to 100 eV, 1000 non-cumulative D bombardment on W surface
A few selected D atom locations superposed at the end of the simulations

Sticking takes place mostly on the bridge sites at the surface

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
The dip in the sticking coefficient is due to the penetration barrier of the first layer of tungsten atoms.

Sticking coefficient of Deuterium (un-irradiated W)

Tersoff 1 – Juslin et al.
Tersoff 2 – Li et al.

Plane averaged potential energy of deuterium in W from the surface (5 nm is surface)
Depth Profile of Deuterium in Tungsten

Diffusion of deuterium is not observed in the simulation time scales

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Attempts for GB studies
Search for ground state Coincidence Site Lattice configuration

The search is an involved process
Many prescriptions are available
We adopted the method outlined by Rittner and Seidman

\[\text{[Phys. Rev. B, 54, 6999 (1996)]} \]

\[\hat{n} = \text{normal to GB} \]
\[\hat{c} = \text{rotation axis} \]
\[t = \text{translation in GB plane} \]
\[\Delta n = \text{volume relaxation along } \hat{n} \]

1. Atomic positions in the two grains are generated using geometrical CSL constructions
2. 3-diemenional Born-von Karman PBC applied
3. Effectively 2 identical GBs are simulated here
4. Overlapped atoms are removed
5. Crystal 1 and Crystal 2 are translated by \(t \) to sample the entire DSC lattice space
6. Volume relaxation is allowed only along \(n \)

As an example, for \(\Sigma_{13} \) CSL in W, we analysed almost 40,000 initial structures and zeroed down to ground state configurations!

2nd RMM of the CRP on Graduated Ringsten,
Seoul, Korea, 8-11 Sept. 2015
Once the ground state CSL is identified, we introduced defects in and around the GB plane and computed the impact of the specific GB on defect formation energies.

Defect Formation Energy

FLOWCHART

- Selection of a particular CSL boundary from database
- Identification of potential defect sites
- Add defects to those sites
- Energy minimization using lattice statics
- Calculation of defect formation energies
- Repeat the process for all the sites
- Repeat for all the CSL boundaries

Vacancy Formation Energy

\[E_{vf} = E_{GB,v} - E_{GB} + E_{cohesive} \]

Interstitial Formation Energy

\[E_{SIA,f} = E_{GB,SIA} - E_{GB} - E_{cohesive} \]

2nd RCM of the CRP on Irradiated Tungsten, Seoul, Korea, 8-11 Sept. 2015
Defect Formation Energy about the Grain Boundary plane

$\Sigma_{13} (051) [100]$ symmetric tilt CSL

$E_r = 3.55$ eV (bulk)

$\delta E = 1.72$ eV

2nd RCM of the CRP on Irradiated Tungsten,
Seoul, Korea, 8-11 Sept. 2015
Future work

• Simulation of damage in polycrystalline W
• Stresses and movement of point defects
• Study of defect-H interaction
Acknowledgements:
1. Chandan Danani, IPR: Neutronics discussions
2. Shrishail Padasalagi, IPR: 3d-Design models and assistance

Thank you