Spectroscopic applications for plasma-wall interaction observations in fusion devices

Kalle Heinola

Joint ICTP-IAEA School on Atomic and Molecular Spectroscopy in Plasmas
6 – 10 May, 2019, Trieste, Italy
Outline

1. Introduction
 a) tokamak plasma-wall interactions
 b) diagnostic tools

2. Spectroscopic applications in plasma edge
 a) erosion of Be wall material
 b) material migration
 c) plasma-induced erosion of W

3. Divertor spectroscopy and ELMs
 a) ELM-induced erosion of W
 b) plasma-material interactions and ELMs
 c) fuel retention and effect of ELMs
1.a tokamaks and PWI

- Present day fusion devices to study plasma properties & plasma-wall interactions (PWI): plasma-surface (PSI) & plasma-material interactions (PMI)
 - Experimental results transferred/extrapolated to larger devices
 - Plasma power and intensity of PWIs increase with machine size
 - Modelling & simulations play a crucial role
 - Models to cope with DEMO & Fusion Power Plant conditions
 - Plasma physics (A+M data!) and materials science

JET
- Plasma pulse: few secs to tens secs
- Volume: 100 m³
- Fusion P: 16 MW (Q~0.67)
- Neutron damage: <<1 dpa
- Particle fluence: \(~10^{24}\) m⁻²

ITER
- Pulse: 400 sec
- Volume: 840 m³
- Power: 500 MW (Q≥10)
- Neutron damage: < 2 dpa
- Particle fluence: ~10²⁷ m⁻²

DEMO1
- Pulse: > 2 hours
- Volume: ~2500 m³
- Power: 2200 MW (Q~30-50), grid 500 MW
- Neutron damage: up to 20-50 dpa
- Neutral particle fluence: ~10²⁷ m⁻²

ICTP-IAEA School, Trieste 9.5.2019
1.a tokamaks and PWI

- plasma monitoring and control
 - plasma magnetically confined → drifts, etc → plasma-wall interactions (PWIs)
1.a tokamaks and PWI

- plasma monitoring and control
 - plasma magnetically confined \rightarrow drifts, etc \rightarrow plasma-wall interactions (PWIs)
 - distinguishable plasma regions:
 1. core (closed B lines):
 - plasma particles confined with B
 - ionized particles and e^{-} traverse on helical trajectories around torus
 - energy: up to tens keV
 - collision processes and fusion
 - monitoring of plasma shape, density, temperature, …
 2. scrape-off layer (SOL; edge; open B lines):
 - region of plasma exhaust: particles escaped the core
 - energy: tens of eV (divertor: ELMs several keV)
 - monitoring density, temperature, …
 - interaction with the surrounding components: Wall lifetime, fuel recycling & retention
1.b diagnostics: core

- plasma core

- several plasma parameters to be monitored
 - particle temperatures T_i, T_e
 - particle densities n_i, n_e
 - plasma shape, flows, and fluctuations

- tens of plasma diagnostics (active and passive)
 - T_i, n_i: radiation emitted in charge-exchange (CX) processes with injected neutral plasma particles; radiation emission collisions as X-rays, γ-rays
 - T_e, n_e: Thomson scattering (laser); electron cyclotron emission (ECE; passive)
 - radiated power: bolometers

- e.g. T_e, n_e in JET (core and edge):

 - ECE – Electron Cyclotron Emission
 - HRTS – High-Resolution Thomson Scattering
 - LIDAR – Light Detection and Ranging (Thomson)
1.b diagnostics: SOL and wall

- plasma edge
 - monitoring of plasma SOL/edge and wall surface
 - particle temperatures T_i, T_e
 - particle densities n_i, n_e
 - properties in the main chamber and in the divertor box:
 - wall temperature
 - impinging particles (energies, flux)
 - erosion

 ...
1.b diagnostics: SOL and wall

- plasma edge
 - monitoring of plasma SOL/edge and wall surface
 - edge plasma and wall diagnostics (active and passive)
 - spectroscopic measurements of particle + particle, particle + e^-, etc processes: XUV-VUV

e.g. JET various XUV-VUV spectroscopy (core and edge)
1.b diagnostics: SOL and wall

- plasma edge
 - monitoring of plasma SOL/edge and wall surface
 - edge plasma and wall diagnostics (active and passive)
 - spectroscopic measurements of particle + particle, particle + e\(^-\), etc processes: XUV-VUV optical emission
 - specific wall areas of interest covered with spectroscopy
 (JET: D, W, Be, hydrides. Seeded impurities N, Ar, Ne)
 - other: Langmuir probes for particle flux to wall; thermocouples; Quartz-micro balance; dust monitors; ...

 e.g. JET optical spectroscopy
1. diagnostics: JET

- Reciprocating probe (a)
 - 14MeV Neutron spectrometer
 - Edge LIDAR Thomson scattering
- Reciprocating probe (b)
- 2.5MeV Time-of-flight neutron spectrometer
- Fast ion and alpha-particle diagnostic
- High energy neutral particle analyser
- Neutron activation
- Active phase neutral particle analyser

- 14MeV Neutron spectrometer
- Active phase soft X-ray cameras
- Hard X-ray monitors
- Bolometer cameras
- Compact, VUV camera
- Compact, in-vessel soft X-ray camera
- Compact, re-entrant soft X-ray camera
- Time-resolved neutron yield monitor
- Bolometer cameras
- Hard X-ray monitors

- Time resolved neutron yield monitor
- Charge exchange recombination spectroscopy
- H-alpha and visible light monitors Brem

- X-ray pulse height spectrometer
- Grazing incidence XUV broadband spectroscopy

- O-mode microwave interferometer
- Electron cyclotron emission heterodyne

- Divertor gas analysis using Penning gauge
- High resolution X-ray crystal spectroscopy

- Divertor spectroscopy
- LIDAR Thomson scattering
- Fast ion and alpha-particle diagnostic

- VUV and XUV spectroscopy of divertor plasma
- 50kV lithium atom beam
- VUV spatial scan
- Multichannel far infrared interferometer

- Bragg rotor x-ray spectroscopy, VUV broadband spectroscopy
- Laser injected trace elements

- Neutron activation
- CCD viewing and recording

- Correlation reflectometer

- Neutron yield profile monitor and FEB
2.a Spectroscopy: Be wall erosion

- JET’s ITER-Like Wall experiment
 - all metal wall
 - Be limiters
 - thermal conductivity
 - impurity getter
 - $T_{\text{melt}} = 1287^\circ\text{C}$
 - W divertor
 - thermal conductivity
 - high erosion threshold
 - $T_{\text{melt}} \sim 3400^\circ\text{C}$
2.a Spectroscopy: Be wall erosion

- JET’s ITER-Like Wall experiment

Diagram:
- X^+, X^0, e^-
- Reflection
- Erosion
- Deposition
- Re-erosion
- Re-deposition
- Recycling
- Retention

Colors:
- Red: D fuel
- Green: Be wall

Data from A+M/PSI

S. Brezinsek, Nucl. Fusion 54, 103001 (2014)
2.a Spectroscopy: Be wall erosion

- JET’s ITER-Like Wall experiment
 - Be main chamber limiters
 - W divertor

- D plasma interactions with limiters
 - Be erosion and material transport
 - determination of the amount of sputtered Be crucial

- In-situ optical spectroscopy emission of Be wall
 - line-of-sight to the plasma contact point
 - lines: Be II (527 nm, 467 nm 436 nm) and Dγ
 - Be erosion due to D⁺, excitation and ionization in collisions with plasma particles (e⁻, D⁺)

S. Brezinsek, Nucl. Fusion 54, 103001 (2014)
2.a Spectroscopy: Be wall erosion

- In-situ optical spectroscopy emission of Be wall
 - Be, D, and formation of D\(_2\), BeD observed
 - temperature effect
 - high \(T_{\text{base}}\) yields lower BeD
 - desorption of D as D\(_2\)
2.a Spectroscopy: Be wall erosion

- In-situ optical spectroscopy emission of Be wall
 - Be, D, and formation of D₂, BeD observed
 - Temperature effect
 - High T_{base} yields lower BeD
 - Desorption of D as D₂
 - Be sputtering rate Y_{Be}:
 \[Y_{\text{Be}} = 4\pi \frac{S I_{\text{Be}}}{X_B T_D} \]
 - Be II intensity
 - D⁺ flux to wall
 - (photon production)$^{-1}$

- Spectroscopic findings:
 - Be erosion increases with T_i
 - Different erosion mechanisms
 - Assessment for wall lifetime!
2.a Spectroscopy: Be wall erosion

- In-situ optical spectroscopy emission of Be wall
 - Be, D, and formation of D₂, BeD observed
 - temperature effect
 - high T_{base} yields lower BeD
 - desorption of D as D₂

- Be sputtering rate Y_{Be}:

$$Y_{Be} = 4\pi \frac{S \times I_{Be}}{XB \times \Gamma_D}$$

- (photon production)$^{-1}$

- Spectroscopic findings:
 - Be erosion increases with T_i
 - different erosion mechanisms
 - assessment for wall lifetime!

S. Brezinsek, Nucl. Fusion 54, 103001 (2014)
2.b Spectroscopy: divertor PSI

- D plasma-surface interactions in W divertor
 - W sputtering threshold by D approx. 250 eV
 - T_e range low: eV...few tens of eV
 - W erosion unlikely due to D
 - wall eroded Be plays role?

G. J. van Rooij, J.Nucl. Mat. 438, S42 (2013)
ICTP-IAEA School, Trieste 9.5.2019
2.b Spectroscopy: divertor PSI

- In-situ optical spectroscopy of W divertor
 - line-of-sight to W divertor
 - lines: W I (400.9 nm) and D\(\varepsilon\)
 - sputtered W get excited and ionized in collisions with plasma particles (e\(^-\), D\(^+\), impurities, ...)

- W sputtering rate \(Y_W\) :

 \[Y_W = 4\pi \frac{S}{XB} \frac{I_W}{\Gamma_D}\]

 - W I intensity
 - D\(^+\) flux to divertor
 - (photon production\(^{-1}\))

G. J. van Rooij, J.Nucl. Mat. 438, S42 (2013)
2.b Spectroscopy: divertor PSI

- In-situ optical spectroscopy of W divertor
 - line-of-sight to W divertor
 - lines: W I (400.9 nm) and D\(\epsilon\)
 - sputtered W get excited and ionized in collisions with plasma particles (e\(^-\), D\(^+\), impurities, ...)

- W sputtering rate \(Y_W\):
 \[
 Y_W = 4\pi \frac{S}{XB} \frac{I_W}{\Gamma_D}
 \]
 (photon production\(^{-1}\))

- Spectroscopic findings (low \(T_e\)):
 - W erosion: Be dependent, increases with \(T_i\)
 - measured 0.5% Be\(^{2+}\) corresponds to Be erosion
 - assessment for divertor sputtering
3.a Spectroscopy: divertor PSI w/ ELMs

- Plasma edge-localized modes (ELMs)
 - ELMs present in medium-sized to large devices (H-mode)
 - plasma pressure increase at pedestal
 - release to divertor → high heat and energetic particles!

Δt_{ELM} \sim ms range
3.a Spectroscopy: divertor PSI w/ ELMs

- Formation of magnetic configuration with plasma strike points in divertor

- Plasma strike points: highest particle & heat load

- Be- coated inconel PFCs
- Be coated PFCs
- W- coated CFC PFCs
3.a Spectroscopy: divertor PSI w/ ELMs

- Plasma edge-localized modes (ELMs)
 - ITER steady state 10 MW/m², slow transients 20 MW/m², particle $E_k \sim$ few tens eV
 - ELMs \sim 1 GW/m², $\Delta t \sim$ 0.5 ms, E_k of keV range
 - disruptions, VDEs, …

![Diagram showing PFC temperature and plasma pulse time with power levels 5 MW/m², 10 MW/m², and 20 MW/m².]
Plasma edge-localized modes (ELMs)
- ELMs present in medium-sized to large devices (H-mode)
- plasma pressure increase at pedestal
- release to divertor → high heat and energetic particles

- monitoring ELMs crucial
- diagnostic methods for $n_{e,i}$, $T_{e,i}$, temp., ...
- assessment of wall effects required
 - plasma operation
 - wall lifetime
 - fuel recycling and retention
3.a Spectroscopy: divertor PSI w/ ELMs

- *In-situ* optical spectroscopy of W divertor with ELMs
 - experiment with detached plasma
 (N$_2$ seeding for divertor plasma mitigation)

\[T_e \downarrow \quad \text{as puffed} \quad N_2 \uparrow \quad \text{in divertor} \]
3.a Spectroscopy: divertor PSI w/ ELMs

- *In-situ* optical spectroscopy of W divertor with ELMs
 - experiment with detached plasma (N\(_2\) seeding for mitigation)
 - between ELMs (blue line): no W erosion
 - during ELM (red line): clear W I peak for erosion

- ELMy plasmas can sputter W efficiently
 - energetic D\(^+\) and impurities from the pedestal

G. J. van Rooij, J.Nucl. Mat. 438, S42 (2013)
ELM-resolved D^+ impact energy (E_i) at W divertor
(unseeded plasma \rightarrow no N_2, no mitigation)

- Why?
 - plasma with 0.5% Be$^{2+}$
 - D^+ dominant ELM component

- How?
 - *in-situ* $D\alpha$ spectroscopy \rightarrow ion/s at target
 - ECE \rightarrow maximum T_e at pedestal ($T_{e,\text{max}}^{\text{ped}}$)
 - absorbed power at target
 - ELM impact energy at divertor correlates with T_e in pedestal as ("Free stream model"):
 \[\max(E_i + E_e) \approx \alpha T_{e,\text{max}}^{\text{ped}} \]

- ECE power

(optical spectroscopy $W\ I$ and $D\alpha$)

3. Spectroscopy: divertor PSI w/ ELMs

- ELM-resolved D^+ impact energy (E_i) at W divertor
 - How?
 - *in-situ* $D\alpha$ spectroscopy \rightarrow ion/s at target
 - ECE \rightarrow maximum T_e at pedestal ($T_{e,\text{max}}^{\text{ped}}$)
 - absorbed power at target
 - Result
 - $\max(E_i + E_e) \approx \alpha T_{e,\text{max}}^{\text{ped}}$ ($E_e = E_{e,\perp} = T_{e,\text{max}}^{\text{ped}}$)
 - $E_{i,\text{max}} \approx 4.23 T_{e,\text{max}}^{\text{ped}}$
 - JET: experimental $T_{e,\text{max}}^{\text{ped}} \approx 1$ keV results
 - $E_{i,\text{max}} \approx 3$ keV
 - D^+ in ELMs sputter W easily
 - D^+ sputters $20 \times$ more W than Be$^{2+}$

3.a Spectroscopy: divertor PSI w/ ELMs

- ELM-resolved D$^+$ impact energy (E_i) at W divertor
 - Result
 - $E_{i,\text{max}} \approx 4.23T_{e,\text{max}}^{\text{ped}}$
 - JET: experimental $T_{e,\text{max}}^{\text{ped}} \approx 1$ keV results
 in $E_{i,\text{max}} \approx 3$ keV
 → D$^+$ in ELMs sputters W easily
 → D$^+$ sputters 20× more W than Be$^{2+}$
 - ITER: theoretical $T_{e,\text{max}}^{\text{ped}} \sim 5$ keV → $E_{i,\text{max}} \sim 20$ keV

optical spectroscopy W I, Be II and Dα

-ogens

- diverted B lines

- $T_{e,\text{max}}^{\text{ped}}$

- $E_{i,\text{max}}$

- ions to divertor

- W sputt. total

- 9.5.2019
3.b Divertor PMI w/ ELMs

- Plasma-material interactions (PMI) below the surface of W divertor target

- Data from A+M

- Neutrons

- Vacancy & interstitial dislocation loop

- Vacancy & interstitial defects

- 3D extended defects

- Grain boundaries

- Retention

- Recycling

- Amorphisation
PMI events and reactions, and fuel retention simulated with multi-scale Rate Theory Equation calculations

- coupled partial differential equations (PDE) for physical processes in the bulk and on the surface

1) D processes inside W
 - diffusion
 - retention, trapping, re-trapping with defects
 - recycling

2) ELM-induced defect evolution inside W
 - nucleation
 - diffusion
 - clustering
 - dissociation
 - ...

→ over 300 entities which take part in 3200 exothermic and 300 endothermic reactions
3.c Divertor fuel retention w/ ELMs

- PMI events and reactions, and fuel retention simulated with multi-scale Rate Theory Equation calculations
 - PDE parametrisation: experiments and computational methods (ab initio, MD)

$$\frac{\partial C_\alpha(x, t)}{\partial t} = D_\alpha \frac{\partial^2 C_\alpha(x, t)}{\partial x^2} + \sum_{N}^{\beta, \gamma=1} S_\alpha(x, t)$$

$$\pm \sum_{N}^{\beta, \gamma=1} k_{\beta, \gamma}^2 D_\beta C_\beta(x, t)$$

$$\pm \sum_{\delta=1}^{N} \nu_\delta e^{-E_{A,\delta}/kT} C_\delta(x, t)$$

$$D = D_0 e^{-E_m/kT}$$

- source term: spectroscopy, MD, other
- energetics: ab initio, MD
- force fields: sink strength and reaction radii MD

3.3 Divertor fuel retention w/ ELMs

- PMI and fuel retention simulation with ELMy plasmas
 - input from D_α (or other method @ divertor)

![Graph showing D flux with ELMs and no ELMs phases]
3.c Divertor fuel retention w/ ELMs

PMI and fuel retention simulation with ELMy plasmas

- time $0 < t < 2.4 \text{ s}$
- limiter phase with no ELMs (~40 eV/D)

- D diffusion deep in the bulk
- no ELM-damage created
- D retained at natural impurities of W e.g. C, O

3.c Divertor fuel retention w/ ELMs

- PMI and fuel retention simulation with ELMy plasmas
- flat-top phase with ELMs
 - $f_{\text{ELM}} \approx 30 \text{ Hz}$
 - D retention in ELM-induced defects
- time $2.4 < t < 8 \text{ s}$
- divertor phase with ELMs ($f_{\text{ELM}} \approx 30 \text{ Hz}$; 4 keV/D)
- ELM-induced damage, D implantation

- D retained in near-surface ELM damage
- effect of target temperature
- complex dynamics of D trapping/detrappping and mobility of defects

3.c Divertor fuel retention w/ ELMs

- PMI and fuel retention simulation with ELMy plasmas
 - flat-top phase with ELMs
 - $f_{\text{ELM}} \sim 30$ Hz
 - D retention in ELM-induced defects

- time $2.4 < t < 8$ s
- divertor phase with ELMs ($f_{\text{ELM}} \sim 30$ Hz; 4 keV/D)

- D retained in near-surface ELM damage
- effect of target temperature
- complex dynamics of D trapping/detrapping and mobility of defects

$A + M \iff PSI \iff PMI$

Thank you!